Categoría de biconjuntos con estructura aditiva y funtores en biconjuntos
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Michoacana de San Nicolás de Hidalgo
Abstract
We define for a commutative ring R, an additive category CR such that contains a full subcategory DR and for every finite group G, subcategories SG,R, with DR equivalent to the biset category, SG,R equivalent to the SpanR(G−set) and CR equivalent to AddD. We prove that FunR(C,R−mod) is equivalent to the biset functors category while FunR(SG,R−mod) is equivalent to the Mackey functors category over G. For X a G-set we give an explicit construction of the representation functor valuated on GX as the Grothendieck group of Vector bundles over X.
Definimos para un anillo conmutativo R, una categoría aditiva CR tal que contiene una subcategoría plena DR y para cada grupo finito G, construimos subcategorías SG,R tales que DR es equivalente a la categoría de biconjuntos, SG,R es equivalente a SpanR(G − set) y CR es equivalente a AddD. Demos- tramos que FunR (C, R − mod) es equivalente a la categoría de biconjuntos mientras que FunR (SG, R−mod) es equivalente a la categoríıa de funtores de Mackey sobre G. Para X un G-conjunto, damos una construcción ́n del funtor de representaciones valuado en GX como el grupo de Grothendieck de los haces vectoriales sobre X.
Definimos para un anillo conmutativo R, una categoría aditiva CR tal que contiene una subcategoría plena DR y para cada grupo finito G, construimos subcategorías SG,R tales que DR es equivalente a la categoría de biconjuntos, SG,R es equivalente a SpanR(G − set) y CR es equivalente a AddD. Demos- tramos que FunR (C, R − mod) es equivalente a la categoría de biconjuntos mientras que FunR (SG, R−mod) es equivalente a la categoríıa de funtores de Mackey sobre G. Para X un G-conjunto, damos una construcción ́n del funtor de representaciones valuado en GX como el grupo de Grothendieck de los haces vectoriales sobre X.
Description
Instituto de Física y Matemáticas. Facultad de Ciencias Físico Matemáticas. Unidad Morelia del Instituto de Matemáticas de la UNAM. Posgrado Conjunto de Doctorado en Ciencias Matemáticas